
Introduction
The maturation of web browsers has reached the point where it is easy to use native 
vector graphics without any third party plugins and installs. SVG is supported in all 
major modern browsers except for IE, which supports VML, a slightly-limited precursor 
to SVG. Despite maturity of SVG in web browsers there are still gaps in support. 
Raphaël JavaScript Library (http://raphaeljs.com) is a small JavaScript library that uses 
SVG as a base. Raphaël equalizes the differences between browsers and emulates the 
features and benefits of SVG in Internet Explorer with VML. Raphaël enables front-end 
developers to use vector graphics in a cross-browser compatible way with only a single 
source to maintain.

Raphaël can be used to create rich interactive graphics, creating vector elements that 
are native to the browser and the DOM. Native DOM elements are exposed to 
JavaScript, allowing for them to be used in the same manner as any other HTML 
element. Raphaël can attach JavaScript handlers, events, animations, and other 
features native to JavaScript to SVG/VML elements created in Raphaël. Raphaël works 
in IE6+, FF3+, Safari 3+, and Opera 9.5+.

jQuery (http://www.jquery.com), a popular JavaScript framework used to simplify HTML 
document traversing, event handling, animating, and Ajax interactions for rapid web 
development, can be used on top of Raphaël for additional interactivity and 
management of SVG in the browser.

This paper will demonstrate how Raphaël works, how it can be used in all browsers, 
why the world needs another JavaScript or SVG library, limitations of both Raphaël and 
SVG in the browser, comparisons with existing SVG browser solutions, and a demo of 
the Raphaël API and its capabilities.
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Raphaël Examples
Hello World - Code

This example illustrates how to use the Raphaël library with the jQuery library. jQuery is 
not required to use Raphaël, but using the DOM manipulation and selector engine 
(known as Sizzle) saves a lot of effort for very little cost. This example is located online 
at: http://raphaeljs.com/text-rotation.html.
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<script type="text/JavaScript" charset="utf-8" src="raphael.js"></script>
<script type="text/JavaScript" charset="utf-8" src="jquery-1.3.2.js"></script>

<script type="text/JavaScript" charset="utf-8">
<!--
window.onload = function () {
    var R = Raphael("holder", 640, 480);

    var hldr = document.getElementById('holder');
    var textNode = hldr.getElementsByTagName('p')[0].childNodes[0];
    var text = textNode.nodeValue;
    var attr = {font: '50px Fontin-Sans, Arial', opacity: 0.5};
    var mouse = null, rot = 0;
    
    var txt = [
        R.text(320, 240, text).attr(attr).attr({fill: "#0f0"}),
        R.text(320, 240, text).attr(attr).attr({fill: "#f00"}),
        R.text(320, 240, text).attr(attr).attr({fill: "#00f"})
    ];
    textNode.nodeValue = '';
    
    $(document).mousemove(function (e) {
        if (mouse === null) {
            mouse = e.pageX;
            return;
        }
        rot += e.pageX - mouse;
        txt[0].rotate(rot, true);
        txt[1].rotate(rot / 1.5, true);
        txt[2].rotate(rot / 2, true);
        mouse = e.pageX;
        R.safari();
    });
};
// -->
</script>



Hello World - Output

The output of this code would result in the following:
And as you move your mouse, the words would rotate at different intervals relative to 
each other:
The equivalent SVG to create the basis for this effect would be, not including the 
rotation based on mouse position:

<?xml version="1.0"?>
<svg width="640" height="480">
	 <desc>Created with Rapha&#xEB;l</desc>
	 <defs/>
	 <text x="320" y="257.5" text-anchor="middle" style="font-family: Fontin-
Sans,Arial; font-style: normal; font-variant: normal; font-weight: normal; 
font-size: 50px; line-height: normal; font-size-adjust: none; font-stretch: 
normal; -x-system-font: none; opacity: 0.5;" font="50px Fontin-Sans, Arial" 
stroke="none" fill="#00ff00" opacity="0.5" transform="rotate(577, 320.201, 
240)">
	 	 <tspan>Hello World</tspan>
	 </text>
	 <text x="320" y="257.5" text-anchor="middle" style="font-family: Fontin-
Sans,Arial; font-style: normal; font-variant: normal; font-weight: normal; 
font-size: 50px; line-height: normal; font-size-adjust: none; font-stretch: 
normal; -x-system-font: none; opacity: 0.5;" font="50px Fontin-Sans, Arial" 
stroke="none" fill="#ff0000" opacity="0.5" transform="rotate(384.667, 320.201, 
240)">
	 	 <tspan>Hello World</tspan>
	 </text>
	 <text x="320" y="257.5" text-anchor="middle" style="font-family: Fontin-
Sans,Arial; font-style: normal; font-variant: normal; font-weight: normal; 
font-size: 50px; line-height: normal; font-size-adjust: none; font-stretch: 
normal; -x-system-font: none; opacity: 0.5;" font="50px Fontin-Sans, Arial" 
stroke="none" fill="#0000ff" opacity="0.5" transform="rotate(288.5, 320.201, 
240)">
	 	 <tspan>Hello World</tspan>
	 </text>
</svg>

Additionally, the equivalent VML is created:

<?xml:namespace prefix = rvml ns = "urn:schemas-microsoft-com:vml" />
<rvml:group style="POSITION: absolute; WIDTH: 640px; HEIGHT: 480px; TOP: 0px; 
LEFT: 0px; rotation: 107" class=rvml coordsize = "640,480">
    <rvml:shape style="WIDTH: 640px; HEIGHT: 480px; TOP: 0px; LEFT: 0px" 
class=rvml coordsize = "640,480" filled = "t" fillcolor = "lime" stroked = "f" 
path = " m320,238 l321,238 e">
        <rvml:textpath style="FONT: 50px Fontin-Sans, Arial; v-text-align: 
center" class=rvml on = "t" string = "Hello World"></rvml:textpath>
        <rvml:path class=rvml textpathok = "t"></rvml:path>
        <rvml:fill class=rvml type = "solid" opacity = ".5"></rvml:fill>
        <rvml:stroke class=rvml opacity = ".5" miterlimit = "8"></rvml:stroke>



    </rvml:shape>
</rvml:group>
<rvml:group style="POSITION: absolute; WIDTH: 640px; HEIGHT: 480px; TOP: 0px; 
LEFT: 0px; rotation: 71.3333333333333" class=rvml coordsize = "640,480">
    <rvml:shape style="WIDTH: 640px; HEIGHT: 480px; TOP: 0px; LEFT: 0px" 
class=rvml coordsize = "640,480" filled = "t" fillcolor = "red" stroked = "f" 
path = " m320,238 l321,238 e">
        <rvml:textpath style="FONT: 50px Fontin-Sans, Arial; v-text-align: 
center" class=rvml on = "t" string = "Hello World"></rvml:textpath>
        <rvml:path class=rvml textpathok = "t"></rvml:path>
        <rvml:fill class=rvml type = "solid" opacity = ".5"></rvml:fill>
        <rvml:stroke class=rvml opacity = ".5" miterlimit = "8"></rvml:stroke>
    </rvml:shape>
</rvml:group>
<rvml:group style="POSITION: absolute; WIDTH: 640px; HEIGHT: 480px; TOP: 0px; 
LEFT: 0px; rotation: 53.5" class=rvml coordsize = "640,480">
    <rvml:shape style="WIDTH: 640px; HEIGHT: 480px; TOP: 0px; LEFT: 0px" 
class=rvml coordsize = "640,480" filled = "t" fillcolor = "blue" stroked = "f" 
path = " m320,238 l321,238 e">
        <rvml:textpath style="FONT: 50px Fontin-Sans, Arial; v-text-align: 
center" class=rvml on = "t" string = "Hello World"></rvml:textpath>
        <rvml:path class=rvml textpathok = "t"></rvml:path>
        <rvml:fill class=rvml type = "solid" opacity = ".5"></rvml:fill>
        <rvml:stroke class=rvml opacity = ".5" miterlimit = "8"></rvml:stroke>
    </rvml:shape>
</rvml:group>

Hello World - Analyzing the JavaScript Code

Decomposing this code, we can see how Raphaël transforms this JavaScript code into 
SVG/VML.

1) Declare the Raphaël Canvas:

var R = Raphael("holder", 640, 480);

2) Declare variables and find DOM nodes:

var hldr = document.getElementById('holder');
var textNode = hldr.getElementsByTagName('p')[0].childNodes[0];
var text = textNode.nodeValue;
var attr = {font: '50px Fontin-Sans, Arial', opacity: 0.5};
var mouse = null, rot = 0;

3) Raphaël allows for vector objects to be placed into JSON/JavaScript data structures 
and modified through loops:

var txt = [
    R.text(320, 240, text).attr(attr).attr({fill: "#0f0"}),
    R.text(320, 240, text).attr(attr).attr({fill: "#f00"}),



    R.text(320, 240, text).attr(attr).attr({fill: "#00f"})
];
textNode.nodeValue = '';

4) Detect the mouse movement and then rotate each text vector node. jQuery is used 
here in place of awful cross-browser mouse movement detection:

$(document).mousemove(function (e) {
    if (mouse === null) {
        mouse = e.pageX;
        return;
    }
    rot += e.pageX - mouse;
    txt[0].rotate(rot, true);
    txt[1].rotate(rot / 1.5, true);
    txt[2].rotate(rot / 2, true);
    mouse = e.pageX;
    R.safari();
});

Hello World - Observations

Notice that Raphaël takes data from existing HTML on the page and uses it in 
generating SVG/VML. This DOM interaction is one of the main benefits in using 
Raphaël, as it can be used both during initialization and execution. Here, the text node 
is rotated based on JavaScriptʼs detection of mouse behavior. Additionally, the text node 
is populated based on existing data. Raphaêl is as much of the DOM as any other 
element.

Layered Shape - Code

In Raphaël, complicated layered shapes can be easily created in just a few lines of 
code. And like everything produceable in Raphaël, it is cross-browser without 
modifications.

var R = paper, x = 310, y = 180, r = 150;
R.ellipse(x, y + r - 3, r + 10, r / 2)
 .attr({fill: "r#000-#000", stroke: "none", opacity: 0});
R.circle(x, y, r)
 .attr({fill: "r(.5,.9)#39c-#036", stroke: "none"});
R.ellipse(x, y, r - 10, r - 3)
 .attr({stroke: "none", fill: "r(.5,.1)#ccc-#ccc", opacity: 0});



Firefox 3.5 Internet Explorer 8

Layered Shape - Decomposition

The shadow:



R.ellipse(x, y + r - 3, r + 10, r / 2)
 .attr({fill: "r#000-#000", stroke: "none", opacity: 0});

The sphere:



R.circle(x, y, r)
 .attr({fill: "r(.5,.9)#39c-#036", stroke: "none"});

The sphereʼs reflection:



R.ellipse(x, y, r - 10, r - 3)
 .attr({stroke: "none", fill: "r(.5,.1)#ccc-#ccc", opacity: 0});

Raphaël API
The document, available online at http://raphaeljs.com/reference.html, provides 
explanations for these native objects, object methods, properties, and attributes.

Native Methods and Objects

http://raphaeljs.com/reference.html
http://raphaeljs.com/reference.html


Vector Objects Object Methods Object Properties Object Attributes

circle
ellipse
image
path
rect
text

animate
attr
getBBox
hide
insertAfter
insertBefore
remove
rotate
scale
show
stop
toBack
toFront
translate

fill
fill-opacity
font
font-family
font-size
gradient
opacity
rotation
scale
stroke
stroke-dasharray
stroke-linecap
stroke-linejoin
stroke-miterlimit
stroke-opacity
stroke-width
translation

cx
cy
height
path
r
rx
ry
src
width
x
y

Extensibility

Raphaël can be extended to allow for plug-ins to use the highest-order functions in both 
the Raphaël canvas and in Raphaël elements themselves. From the documentation:

Adding your own methods to canvas

You can add your own method to the canvas. For example if you want to draw pie chart, 
you can create your own pie chart function and ship it as a Raphaël plugin. To do this 
you need to extend Raphael.fn object. Please note that you can create your own 
namespaces inside fn object. Methods will be run in context of canvas anyway. You 
should alter fn object before Raphaël instance was created, otherwise it will take no 
effect.

Raphael.fn.arrow = function (x1, y1, x2, y2, size) {
    return this.path(// some code here);
};
// or create namespace
Raphael.fn.mystuff = {
    arrow: function () {…},
    star: function () {…},
    // etc…
};
var paper = Raphael(10, 10, 630, 480);
// then use it
paper.arrow(10, 10, 30, 30, 5).attr({fill: "#f00"});
paper.mystuff.arrow();



paper.mystuff.star();

Adding your own methods to elements

You can add your own method to elements. This is useful when you want to hack 
default functionality or want to wrap some common transformation or attributes in one 
method. In difference to canvas methods, you can redefine element method at any time.

Raphael.el.red = function () {
    this.attr({fill: "#f00"});
};
// then use it
paper.circle(100, 100, 20).red();

JavaScript Interaction with jQuery

When Raphaël is used in conjunction with jQuery, all Raphaël objects can be 
transparently passed to jQuery for jQuery objects. These JQuery objects can be used 
just as any other DOM element that is handled by jQuery, including, but not limited to, 
animations, styling, timers, event handling, arbitrary data stores, and event and mouse 
bindings. 

While none of these JavaScript methods are specific to jQuery and can all be written in 
pure JavaScript, the simple fact that jQuery smoothes out many of the differences 
between different browsers means that you can continue to write cross-browser code in 
JavaScript with minimal effort necessary to account for one browser over another. 

Considerations & Lessons
Performance

Of the few differences between different browsers exposed in the Raphaël API, the 
largest difference by far is that of performance. SVG runs with speed and perceived 
smoothness in all browsers that support it. All modern browsers that currently support 
SVG are also, in fact, putting in a great amount of effort into developing SVG as their 
implementations correspond to the SVG spec, as well as speed improvements that are 
found with modern rendering engines which precompute and prefetch objects and 
interactions with aplomb.

However, Internet Explorer, which only supports VML, renders vector elements in a 
fraction of the speed. Additionally, Internet Explorer 8 actually increases the delay in 
interacting with VML elements through JavaScript. Any loops in JavaScript that interact 
with elements have a slightly noticeable delay, and as the number of elements increase, 
performance degrades much quicker in Internet Explorer than it does in SVG-capable 
browsers. 



This difference in rendering speed and interaction delays is attributable only to Internet 
Explorerʼs implementation of VML. A comparable implementation of SVG in Internet 
Explorer would be expected to perform on a level consistent with all other modern 
browsers.

Accessibility

Raphaël, as a JavaScript framework, produces SVG and VML on the client-side. When 
developers talk about accessibility, they often mean one of two terms. The first is 
accessibility in terms of search engine optimization (SEO) and marketing (SEM). The 
second is in terms of usability and reach for those using non-standard forms of 
browsing.

While Raphaël interprets JavaScript commands into cross-browser vector commands, it 
is only able to do so after the page is rendered. This means that concerns about Search 
Engines being able to access the data that is “locked up” in the JavaScript code are the 
same as concerns about Flash. Google has stated its dedication to unlocking content 
from Flash1 and if Raphaël becomes a widely enough used technology, there is no 
reason to believe that Google will not be able to parse the resulting SVG/VML from 
interpreted Raphaël JavaScript code.

As for accessibility with screen readers, Raphaël produces markup that is inserted 
directly into the DOM, which means that the markup produced from interpreting 
Raphaëlʼs JavaScript commands are no different than any other markup that is directly 
embedded in the page, such as HTML or raw SVG. Screen readers will be able to take 
advantage of the fact that Raphaël makes use of the DOM in a way that Flash cannot.

Additionally, if Raphaël is interacting with data that is on the page, such as in a chart or 
graph, a screen reader will still be able to take advantage of the raw data, in the case of 
JavaScript being disabled, or the screen reader using the data that is on the page 
regardless of presentation due to SVG markup.

API Changes

With an unfinished feature set, Raphaël has had to change the API a few times over the 
course of releasing a version 1.0. A number of methods have been removed or merged 
into other methods. While this is an unfortunate side-effect of optimizing code reuse, 
Dmitry explains his rationale on his personal blog:

Recently I released Raphaël 1.0 RC1. The most noticeable change for users of the 
library is differences in the API: removing moveTo, lineTo and friends from the path 
object. Why did I decide to do this? The biggest drawback of these methods is that they 
apply immediately. That means that if you draw path consisting of three segments, path 

1 http://searchengineland.com/google-now-crawling-and-indexing-flash-content-14299 
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element is updated three times – each time with increased number of segments, so total 
number of segments drawn is 1 + 2 + 3 = 6. The more segments your path has, the 
longer it takes to draw. In geometric progression.

To avoid this I could introduce some method “draw” that could be called after you define 
all segments, but this doesnʼt look like an elegant solution and doesnʼt suit the libraryʼs 
name. There is a solution that is compact, simple and you could easily work with it. Say, 
you want to change some point on the path. There is no interface for this apart from 
SVG path, and I canʼt think of any elegant and easy to grasp API for this. Manipulating 
strings is what JavaScript can do very well. So I removed these methods from the library 
to external plugin, which you could concatenate with the Raphaël if you really rely on 
them. I suggest you learn SVG path syntax: it is simpler than it looks.

Other big thing is adding support for angle in arc. This is very rare thing, and frankly, I 
havenʼt seen it in the wild, but without it SVG path support wasnʼt complete. To make it 
happen I rewrote arcTo for VML completely. Now it converts arc to bezier curve, because 
VML doesnʼt have support for angles in arc segments. The same method is now used in 
animation (for SVG & VML), which makes animation more smooth. Conversion of the 
whole path into bezier curves let me do path bounding box calculations more precisely, 
especially in VML. In fact, Safari doesnʼt calculate bounding box for path correctly either.

Caching

JavaScript memoization has been implemented in Raphaël to achieve a drastic speed-
up in the reuse of functions, esp. in loops and cycles. Memoization is a method used to 
increase speed of slow functions by caching the arguments and results. The expense of 
memoization is a marginal use of additional memory at the benefit of a gain in speed in 
reused functions.

The limitations of this method of caching are quite evident. Only scalar values and 
arrays can be used as arguments in memoized JavaScript functions. Objects can not be 
passed in due to browser security limitations and prohibitions. However, this guarantees 
idempotency in the function, as the arguments can be dereferenced and stored for 
cache lookups. 

Limitations

Due to the DOM based nature of SVG and VML, the number of elements that can be 
drawn or interact is limited based on a browser basis. Canvas and Flash, due to their 
thicker wall between the browser and the canvas, allow for many more elements. 
Additionally, more elements, in SVG and the DOM, means worse performance, whereas 
Canvas and Flash do not degrade under such circumstances.

Secondly, Raphaël only produces SVG and VML after page load. The consequences of 
this are two-fold: (a) there are no SEO benefits for markup that is not on the page at 
load time, and (b) there is a slight delay for any SVG/VML to appear on the page, since 



Raphaël waits until it is run, which must be either after the element in the DOM that will 
serve as the Raphaël canvas has loaded, or during the document.ready() event.

Alternatives to Raphaël

There are a few existing solutions to the problem of creating interactivity and animated 
vector graphics. One solution, Adobe Flash, sits closer to the extreme of not allowing 
the browser to have any control, while SVG is a solution that gives full control to the 
browser, where some browsers go so far as to display the same code in a slightly-
different manner than the next browser. Additionally, using JavaScript on the <canvas> 
tag, or using JavaScript directly on the DOM, allows for interaction between elements 
on the page, but elements in a canvas are sand-boxed inside the canvas, whereas SVG 
elements are native to the DOM. 

SVGWeb, an open-source project that is hosted by Google, is a library that converts 
SVG into a Flash-based canvas on browsers that do not support SVG. The performance 
of Flash can be noticeably faster, and SVGWeb creates Flash-based canvases that 
perform similarly to the native SVG implementation. However, SVGWeb suffers from the 
same constraints as Raphaël with regards to lack of SEO benefits. Additionally, 
SVGWeb locks the shapes and content behind Flash, which degrades accessibility, and 
also makes JavaScript interaction not possible. However, JavaScript interactions with 
elements is not supported, as SVGWeb uses a Flash sandbox in IE (and on other 
browsers when deliberately set), which prevents the ability to interact with vector 
elements in JavaScript.

SMIL, a W3C standard for defining timing, animations, layout, and multimedia embeds, 
is only well-supported on Firefox, Safari, and Opera. Raphaëlʼs goal of being entirely 
cross-browser precludes the use of SMIL for animations. But SMIL is only one of a 
handful of browser-native ways of animating vector elements of SVG. Instead, Raphaël 
relies on JavaScript to produce timers and animations, which also offers better user 
interface capabilities than SMIL. CSS Animation support also works on Raphaël 
elements, but is only supported by Safari 4.

Canvas is not a direct competitor to SVG. Canvas is not vector-based but rather bitmap-
based. Canvas is more of a complimentary technology to SVG, being used to support 
graphics that are more prevalent in games and graphs, rather than the vectorized 
shapes of SVG. However, Canvas is less object-oriented than SVG, due to the drawing 
nature of Canvas. SVGʼs elements can be “stored” on the page, better suited to 
interacting with their data, whereas Canvas paints on to the page, not inherently 
keeping track of shapes and objects. A recent blog comment on the difference between 
SVG and Canvas illustrates a common difficulty with Canvas2:

For instance, suppose one wanted in a generic scatter plot tool to implement a “data 
selector” which allows the user to highlight rectangular subsets of data points with a 

2 http://neilobremski.wordpress.com/2009/04/30/svg-vs-canvas#comment-89 



dynamically-sized rectangle dragged over the desired region in the canvas. In this case, 
it would be necessary to 1) model the points in the scatter plot as some object capturing 
the “vector graphics” nature of the canvas, 2) and then on each mousemove on which 
the mouse is down, clear the canvas, redraw all the points, and then have a rectangle 
drawn from the original depression point of the mouse to its current location. Obviously it 
would be more convenient if I could simply model the data points and the “selector box” 
rectangle as separate persistent objects in the DOM, and then simply modify the 
rectangleʼs configuration by changing one of its DOM properties.

Dojo, which has support for many of the same drawing tools provided by Raphaël does 
not allow for support with other client-side libraries such as jQuery or mootools. Raphaël 
allows for the ability to drop in another JavaScript library and have it seamlessly work 
with Raphaël objects. 

Real World Examples
Raphaël is currently being used in a number of places on the web. Two notable 
examples:

The Washington Post / EVRI

At the bottom of every article page is an EVRI widget which shows topics extracted from 
the article and the connections between different topics. See this article for an example: 
http://www.washingtonpost.com/wp-dyn/content/article/2005/11/29/
AR2005112901464.html. 

Daylife
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Daylife, a news aggregator with articles, photos, and quotes on many major topics in the 
news, uses Raphaël on all topic pages. See the Barack Obama topic page on Daylife 
for an example: http://beta.daylife.com/topic/Barack_Obama. 
Summary
Similar to jQuery, an open source JavaScript library that simplifies the interaction 
between HTML and JavaScript, Raphaël simplifies the creation of cross-browser vector 
graphics and the necessary interaction between the SVG/VML objects and HTML.
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